

70		821	(','	
ecká abeceda	ís	sl. p edpony	Aton	nové skupin
alfa	1/2	hemi	ОН	hydroxyl
beta	3/2	seskvi	CO	karbonyl
gama	1	mono	CS	thiokarbonyl
delta	2	di	CSe	selenokarbor
epsilon	3	tri	NO	nitrosyl
zéta	4	tetra	NO ₂	nitryl
éta	5	penta	PO	fosforyl
théta	6	hexa	PS	thiofosforyl
ióta	7	hepta	VO	vanadyl
kappa	8	okta	SO	thionyl
lambda	9	nona	SO ₂	sulfuryl
mí μ	10	deka	S_2O_5	disulfuryl
ný	11	undeka	SeO	seleninyl
ksí	12	dodeka	SeO ₂	selenonyl
omikrón	13	trideka	CrO ₂	chromyl
pí	14	tetradeka	UO_2	uranyl
ró	15	pentadeka	NpO_2	neptunyl
sigma	16	hexadeka	PuO ₂	plutonyl
tau	17	heptadeka	CIO	chlorosyl
ypsilon	18	oktadeka	CIO ₂	chloryl
fí	19	nonadeka		perchloryl
chí	20	ikosa	10_2	jodyl
psí	21	heneikosa		
ómega	22	dokosa	Názvo	osl. koncovl
	23	trikosa		
Násob. p edpony	24	tetrakosa	I -ný	-ná -nan
	25	nontakosa	II no	otý natá nat

25 pentakosa 30 triakonta dvakrát *bis* 31 hentriakonta tris t ikrát 32 dotriakonta ty ikrát *tetrakis* 40 tetrakonta p tkrát 50 pentakonta šestkrát *hexakis* 99 nonanonakonta sedmkrát *heptakis* 100 hekta osmkrát oktakis 101 henhekta dev tkrát *nonakis*

desetkrát dekakis 200 dikta

-natý -natá -natan -itá -itan IV -i itý -i itá -i itan -i ný -i ná -i nan -e ný -e ná -e nan VI -ový -ová -an* VII -istý -istá -istan VIII -i elý -i elá -i elan *jednomocenství a šestimocenství se odlišuje zdvojením souhlásky n, nap.

Základní chemické vztahy

 $m_{\scriptscriptstyle (A)}$ hmotnost látky A [kg], $n_{\scriptscriptstyle (A)}$ látkové množství [mol], $w_{\scriptscriptstyle (A)}$ hmotnostní zlomek látky A

$$p_{(A)} = \frac{m_{(A)}}{V_{(A)}} = \frac{M_{m(A)}}{V_{m(A)}}$$

(A) je hustota [kg·m⁻³], V_(A) objem látky . [m³], $M_{m(A)}$ molární hmotnost látky A [kg·mol¹] a $V_{m(A)}$ molární objem látky A [m³-mol-1]

$$W_{(A)} = \frac{m_{(A)}}{m}$$

kde $W_{(A)}$ je hmotnostní zlomek prvku (složky) A ve slou enin (sm si) a m celková hmotnost

$$m_{(A)} = \frac{N_{(A)}}{N} = \frac{m_{(A)}}{N}$$

kde $N_{(A)}$ je po et ástic látky A, N_{A} je Avogadrova konst. a $M_{r(\Delta)}$ relativní molekulová hmotnost látky A

$$_{A)} = \frac{n_{(A)}}{V}$$

kde $c_{(A)}$ je molární koncentrace látky A v roztoku [mol·dm⁻³] a V[dm³] je daný objem

$$A_{A} = \frac{n_{(A)}}{m}$$

kde $\mu_{(A)}$ je molalita složky A v roztoku [mol·kg⁻¹] a m_R daná hmotnost rozpoušt dla [kg]

$$m_1 w_1 + m_2 w_2 = (m_1 + m_2) w$$

kde m_1 a m_2 jsou hmotnosti mísených roztok a w₁ a w₂ hmotnostní zlomky látky A v mísených roztocích a w výsledný hmotnostní zlomek látky A ve vzniklém roztoku

(A) je molární zlomek složky A ve slou enin (sm si) a n celková hmotnost slou eniny (sm si)

$$V_{\Sigma}$$
 kde $_{\text{(A)}}$ je objemový zlomek složky A ve sm si, $V_{\text{(A)}}$ je objem složky A a V celkový objem sm si

 $A_r (^A_z B) =$ kde $A_r({}_{z}^{A}B)$ je relativní atomová hmotnost, $m({}^{\wedge}_{z}B)$ je hmotnost atomu konkrétního nuklidu [kg] a m_u je atomová hmotnostní jednotka

$A_r^{\text{stř}}(zB) = 0.01 \cdot \sum_{i} (A_r(zB) \cdot I_{i})$

kde Ast (B) je st ední relativní atomová hmotnost, $A_r({}_{z}^{A}B)$ je relativní atomová hmotnost nuklidu a $I_{(i)}$ jeho procentuelní zastoupení

$$pV = nRT$$

kde p je tlak plynu [Pa], V jeho objem [m³], npo et mol plynu [mol], R je univerzální plynová konstanta a Ttermodynamická teplota [K]

 $K_{\rm s} = [m \cdot s]^m \cdot [n \cdot s]^n$ kde K_s je sou in rozpustnosti a s je rozpustnost látky B_mA_n [mol·dm⁻³]

 $pH = -log[H_3O^{\dagger}]$ kde [H₃O⁺] je rovnovážná koncentrace oxoniových iont, dále platí: pH + pOH = 14 a $[H_3O^+] = 10^{-pH}$

$$K_{A} = \frac{[H_{3}O^{\dagger}]^{2}}{c_{HA} - [H_{3}O^{\dagger}]} \approx \frac{[H_{3}O^{\dagger}]^{2}}{c_{HA}}$$

kde $K_{\!\scriptscriptstyle A}$ je rovnovážná konstanta slabé kyseliny, [H₃O⁺] je rovnovážná koncentrace oxoniových iont a c_{HA} výchozí koncentrace kyseliny, odtud pak: $[H_3O^+] = "(-K_A \pm (K_A^2 + 4 K_A \cdot C_{HA})") \text{ resp. } [H_3O^+] = (K_A \cdot C_{HA})"$

 $pH = \frac{1}{2}(14 + pK_A + \log c_s)$ kde c_s je koncentrace soli slabé kyseliny a silné zásady a K_A je disocia ní konstanta slabé kyseliny

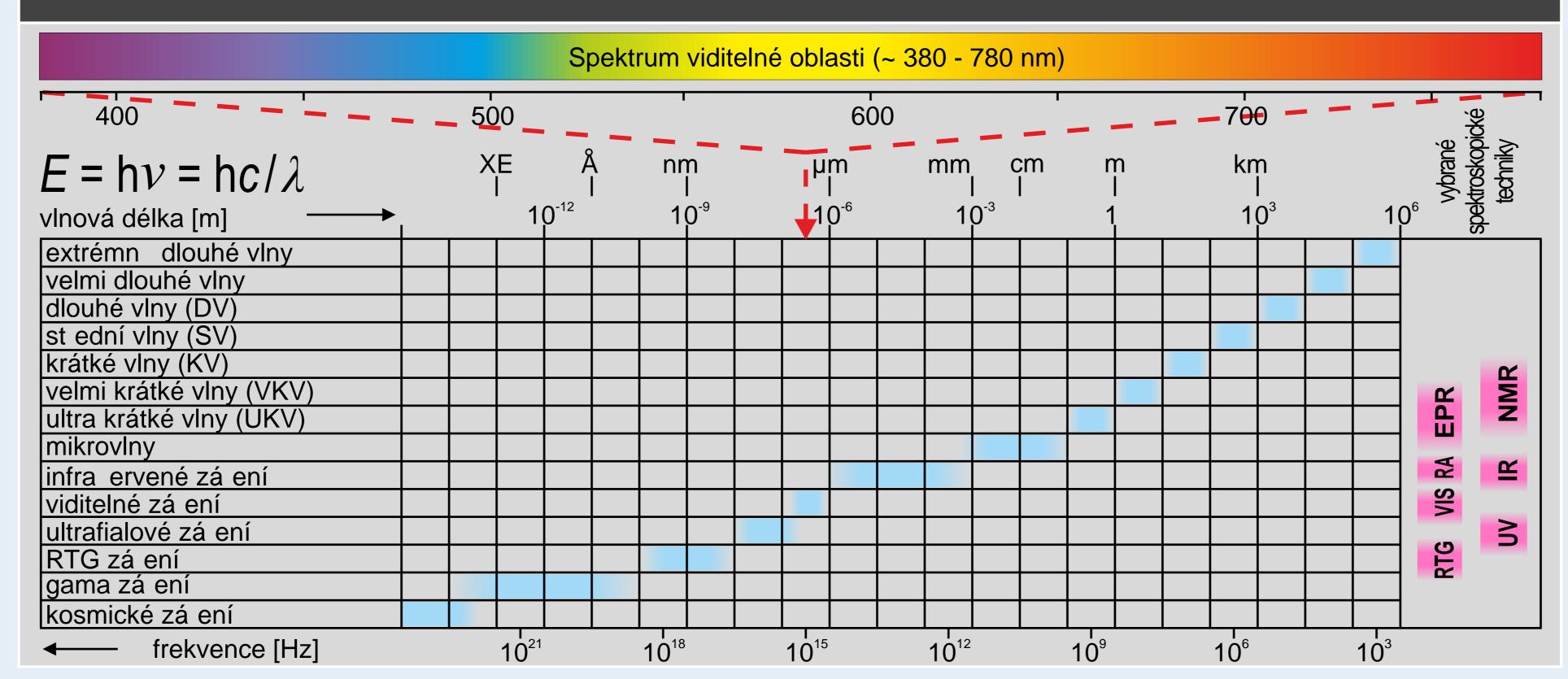
 $pH = \frac{1}{2}(14 - pK_B - \log c_s)$ kde $c_{\rm s}$ je koncentrace soli slabé zásady a silné kyseliny a $K_{\rm B}$ je disocia ní konstanta slabé zásady

 $pH = pK_A + log (c_s/c_{HA})$ kde $c_{\!\scriptscriptstyle S}$ je koncentrace soli slabé kyseliny a silné zásady a c_{HA} je koncentrace volné slabé kyseliny (pufr) $pH = 14 - pK_B - log (c_s/c_{BOH})$

kde c_s je koncentrace soli slabé zásady a silné kyseliny a c_{BOH} je konc. volné slabé zásady (pufr) $pH = \frac{1}{2}(14 + pK_A - pK_B)$

kde K_{A} je disocia ní konstanta slabé kyseliny a K_B je disocia ní konstanta slabé zásady tvo ící s I slabé kyseliny a slabé zásady

 $pH = \frac{1}{2} (pK_{A1} - pK_{A2})$ kde K_{A1} a K_{A2} jsou disocia ní konstanty do 1. a do 2. stupn dvojsytné slabé kyseliny tvo ící


p íslušnou hydrogens I

		eduk ní ele dle potenciál , E			
Li⁺/Li	-3,04	Cr ²⁺ /Cr	-0,90	Cu ²⁺ /Cu	0
Rb⁺/Rb	-2,98	Ta⁵⁺/Ta	-0,81	Cu⁺/Cu	0
K ⁺ /K	-2,93	Zn ²⁺ /Zn	-0,76	1/2 I ₂ /I ⁻	0
Cs⁺/Cs	-2,92	Cr³⁺/Cr	-0,74	Bi³⁺/Bi	0
Fr⁺/Fr	-2,92	Ga³⁺/Ga	-0,53	Rh³⁺/Rh	0
Ba ²⁺ /Ba	-2,92	Fe ²⁺ /Fe	-0,44	Fe ³⁺ /Fe ²⁺	0
Ra ²⁺ /Ra	-2,92	Cr ³⁺ /Cr ²⁺	-0,41	Hg ₂ ²⁺ /Hg	0
Sr ²⁺ /Sr	-2,89	Cd ²⁺ /Cd	-0,40	Ag⁺/Ag	0
Ca ²⁺ /Ca	-2,84	In³+/In	-0,34	Ru²+/Ru	0
Na⁺/Na	-2,71	TI⁺/TI	-0,34	Hg ²⁺ /Hg	0
La ³⁺ /La	-2,52	Co ²⁺ /Co	-0,28	Pd ²⁺ /Pd	0
Y ³⁺ /Y	-2,37	Ni ²⁺ /Ni	-0,23	1/2 Br ₂ /Br ⁻	1
Mg ²⁺ /Mg	-2,36	In⁺/In	-0,20	Ir ³⁺ /Ir	1
1/2 H ₂ /H ⁻	-2,23	Sn ²⁺ /Sn	-0,14	Pt ²⁺ /Pt	1
Sc ³⁺ /Sc	-2,03	Pb ²⁺ /Pb	-0,13	1/2 Cl ₂ /Cl ⁻	1
Be ²⁺ /Be	-1,97	W ³⁺ /W	-0,11	Au³+/Au	1
Al ³⁺ /Al	-1,68	Fe ³⁺ /Fe	-0,04	Ce ⁴⁺ /Ce ³⁺	1
Zr ⁴⁺ /Zr	-1,55	H^+/H_2 (g)	0,00	$1/2 S_2O_8^2/SO_4^2$	2
Ti ³⁺ /Ti	-1,21	Sn ⁴⁺ /Sn ²⁺	0,15	1/2 F ₂ /F ⁻	2
Mn ²⁺ /Mn	-1,18	Cu ²⁺ /Cu ⁺	0,15		
V ²⁺ /V	-1,13	$S_4O_6^{2-}/2S_2O_3^{2-}$	0,17		
$H_3PO_4 + 2$	2H ⁺ + 2e ⁻ =	$H_3PO_3 + H_2O$			-0
H ₃ AsO ₄ +	$H_3AsO_4 + 2H^+ + 2e^- = H_3AsO_3 + H_2O$				
$O_2 + 2H^+ +$	$O_2 + 2H^+ + 2e^- = H_2O_2$				
$10_{3}^{-} + 6H^{+} + 6e^{-} = 1^{-} + 3H_{2}O$					
$IO_3^- + 6H^+ + 5e^- = 1/2 I_2 + 3H_2O$					
$1/2 \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-} + 7 \operatorname{H}^{+} + 3 \operatorname{e}^{-} = \operatorname{Cr}^{3+} + 7/2 \operatorname{H}_{2} \operatorname{O}$					
7		$Mn^{2+} + 4H_2O$			1
$H_2O_2 + 2H^+ + 2e^- = 2H_2O$					
$O_3 + 2H^+ + 2e^- = O_2 + H_2O$					
$1/2 F_2 + H^4$	$+ e^{-} = HF$				3

atomová hmotnostní jednotka	и	=	$(1,660538921 \pm 0,000000073) \cdot 10^{-27} \text{ kg}$
Avogadrova konstanta	N _A	=	$(6,02214129 \pm 0,00000027) \cdot 10^{23} \text{ mol}^{-1}$
Bohr v magneton	μ_{B}	=	$(927,400968 \pm 0,000020) \cdot 10^{-26} \text{ J} \cdot \text{T}^{-1}$
Bohr v polom r	$a_{\scriptscriptstyle 0}$	=	$(0.52917721092 \pm 0.00000000017) \cdot 10^{-10}$ r
Boltzmannova konstanta	K	=	$(1,3806488 \pm 0,0000013) \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$
elementární náboj	е	=	(1,602176565 ±0,000000035)·10 ⁻¹⁹ C
Faradayova konstanta	F	=	(96485,3365 ±0,0021) C·mol ⁻¹
gravita ní konstanta		=	$(6,67384 \pm 0,00080) \cdot 10^{-11} \text{ m}^3 \cdot \text{kg}^{-1} \cdot \text{s}$
jaderný magneton	μ_{N}	=	$(5,05078353 \pm 0,00000011) \cdot 10^{-27} \text{ J} \cdot \text{T}^{-1}$
klidová hmotnost elektronu	$m_{\rm e}$	=	$(9,10938291 \pm 0,00000040) \cdot 10^{-31} \text{ kg}$
		=	$(5,4857990946 \pm 0,0000000022) \cdot 10^{-4} u$
klidová hmotnost neutronu	$m_{\rm n}$	=	$(1,674927351 \pm 0,000000074) \cdot 10^{-27} \text{ kg}$
		=	$(1,00866491600 \pm 0,000000000043) u$
		=	$(1838,6836605 \pm 0,0000011) m_e$
klidová hmotnost protonu	m_{p}		$(1,672621777 \pm 0,000000074) \cdot 10^{-27} \text{ kg}$
		=	$(1,007276466812 \pm 0,0000000000090) u$
		=	$(1836,15267245\pm0,00000075)$ m_e
Loschmidtova konstanta	n_{0}	=	$(2,6867805 \pm 0,0000024) \cdot 10^{25} \text{ m}^{-3}$
molární plynová konstanta	R	=	$(8,3144621 \pm 0,0000075) \text{ J·mol}^{-1} \cdot \text{K}^{-1}$
permeabilita vakua	μ_{o}	=	4 ·10 ⁻⁷ N·A ⁻² (p esn)
		≅	12,566370614 · 10 ⁻⁷ N·A ⁻²
permitivita vakua	0	=	$\mu_0^{-1} \cdot c^{-2}$ (p esn)
		≅	8,854187817 · 10 ⁻¹² F·m ⁻¹
Planckova konstanta	h		$(6.62606957 \pm 0,00000029) \cdot 10^{-34} \text{ J} \cdot \text{s}$
Rydbergova konstanta	R_{∞}	=	$(10973731,568539 \pm 0,000055) \text{ m}^{-1}$
rychlost sv tla ve vakuu	C		299792458 m·s ⁻¹ (p esn)
standardní molární obj. ideál. plynu	$V_{\rm m}$		$(22,413968 \pm 0,000020)\cdot 10^{-3} \text{ m}^3 \cdot \text{mol}^{-3}$
standardní tlak (normální)	p°	=	101325 Pa (p esn)
Stefan-Boltzmannova konstanta		=	$(5,670373 \pm 0,000021)\cdot 10^{-8} \text{ W}\cdot \text{m}^{-2}\cdot \text{K}$
teplota tání vody (normální)	$T_{t,ac}$	•	(273,152519 ±0,000002) K
teplota trojného bodu vody	$T_{3,a}$	=	273,16 K (p esn)
tíhové zrychlení (normální)	g_{n}	=	9,80665 m·s ⁻² (p esn)

Vybrané fyzikální konstanty

Spektrum elektromagnetického zá ení

P evody jednotek

stupn Celsia na Kelviny: $T_{(K)} = T_{(C)} + 273,15$ stupn Fahrenheita na stupn Celsia: $T_{(\circ_C)} = (T_{(\circ_F)} - 32) / 1,8$ torry na pascaly: $p_{(Pa)} = p_{(Torr)} \cdot 133,322$ atmosféry na pascaly: $p_{(Pa)} = p_{(atm)} \cdot 101325$ libra (pound) na kilogramy: $m_{(kq)} = m_{(lb)} \cdot 0,45359237$ unce (ounce) na kilogramy: $m_{(kq)} = m_{(oz)} \cdot 0,028349523125$ trojská libra na kilogramy: $m_{(kq)} = m_{(lbt)} \cdot 0,3732417216$ trojská unce na kilogramy: $m_{(kq)} = m_{(troz)} \cdot 0,0311034768$ amer. barel (barrel US) na m³: $V_{(m^3)} = V_{(bl.)} \cdot 0,158987294928$ amer. galon (gallon US) na m³: $V_{(m^3)} = V_{(gal)} \cdot 0,003785411784$ mangannan (Mn') a manganan (Mn'') mach (úrove mo e, 0 °C) na m·s⁻¹: $V_{(m\cdot s^{-1})} = V_{(Ma)} \cdot 331,46$

kalorie na joule: $E_{(J)} = E_{(cal.)} \cdot 4,1868$ elektronvolt na joule: $E_{(J)} = E_{(eV)} \cdot 1,6021917 \cdot 10^{-19}$ hartree na joule: $E_{(J)} = E_{(E_b)} \cdot 4,3598 \cdot 10^{-18}$ míle na metry: $I_{(m)} = I_{(mi)} \cdot 1609,344$ námo ní míle na metry: $I_{(m)} = I_{(n,m)} \cdot 1852$ yardy na metry: $I_{(m)} = I_{(vd.)} \cdot 0,9144$ stopy (food) na metry: $I_{(m)} = I_{(ft.)} \cdot 0,3048$ palce (inch, coul) na metry: $I_{(m)} = I_{(in.)} \cdot 0,0254$ astronom. jednotka na metry: $I_{(m)} = I_{(AU)} \cdot 149597870000$ sv telný rok na metry: $I_{(m)} = I_{(lv)} \cdot 9,4605 \cdot 10^{15}$ parsek na metry: $I_{(m)} = I_{(pc)} \cdot 3,0857 \cdot 10^{16}$

Vybrané matematické vzorce a vztahy

Operace s mnoho leny $(a + b)^2 = a^2 + 2ab + b^2$ $(a - b)^2 = a^2 - 2ab + b^2$ $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ Operace s mocninami $r \cdot a^m + s \cdot a^m = (r + s)a^m$ $a^m \cdot a^n = a^{m+n}$ $a^m \cdot b^m = (a + b)^m$ $a^m / a^n = a^{m-n}$ $a^m / b^m = (a / b)^m$ $(a \cdot b)^m = a^m \cdot b^m$ Operace s logaritmy pokud $z^x = a$ potom $\log_z a = x$ $\log a \cdot b = \log a + \log b$ $\log a / b = \log a - \log b$ $\log a^m = m \cdot \log a$ $\log a^m = m \cdot \log$			
$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ Operace s mocninami $r \cdot a^m + s \cdot a^m = (r + s)a^m$ $a^m \cdot a^n = a^{m+n}$ $a^m / a^n = a^{m-n}$ $a^m / b^m = (a / b)^m$ $(a^m)^n = a^{m-n}$ $(a \cdot b)^m = a^m \cdot b^m$ $a^m = 1 / a^n$ $\sqrt[n]{a^m} = a^{m/n}$ $\sqrt[n]{a^m} = a^{m/n}$	$(a + b)^2 = a^2 + 2ab + b^2$	pokud $z^x = a$	potom $log_z a = x$
Operace s mocninami $r \cdot a^m + s \cdot a^m = (r + s)a^m$ $a^m \cdot a^n = a^{m+n}$ $a^m \cdot b^m = (a + b)^m$ $a^m / a^n = a^{m-n}$ $a^m / b^m = (a / b)^m$ $(a^m)^n = a^{m-n}$ $(a \cdot b)^m = a^m \cdot b^m$ $a^{-n} = 1 / a^n$ $\sqrt[n]{a^m} = a^{m/n}$ Iog $\sqrt[m]{a} = 1 / m \cdot \log a$ Geometrie a,b - strany, v - výška, r - pokano o - obvod, S - plochano o - obvod, S - obvod, S - plochano o - obvod, S - plochano o - obvod, S - plochano o - obvod, S - o	$(a - b)^2 = a^2 - 2ab + b^2$ $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$	$\log a / b = \log$	a - log b
$a^{m} \cdot a^{n} = a^{m+n}$ $a^{m} \cdot b^{m} = (a + b)^{m}$ $a^{m} / a^{n} = a^{m-n}$ $a^{m} / a^{m} = a^{m-n}$ a^{m} / a^{m	Operace s mocninami	$\log \sqrt[m]{a} = 1 / m$	ı·log a
$a^{m} \cdot b^{m} = (a + b)^{m}$ $a^{m} / a^{n} = a^{m-n}$ $a^{m} / b^{m} = (a / b)^{m}$ $a^{m} / b^{m} = (a / b)^{m}$ $a^$			/ ¥1
$a^{m} / b^{m} = (a / b)^{m}$ $(a^{m})^{n} = a^{m \cdot n}$ $(a \cdot b)^{m} = a^{m} \cdot b^{m}$ $a^{-n} = 1 / a^{n}$ $\sqrt[n]{a^{m}} = a^{m/n}$ Kruh $0 = 2 \text{ r}$ $S = r^{2}$ $V = 4/3 \text{ r}^{3}$	$a^{m} \cdot b^{m} = (a + b)^{m}$ $a^{m} / a^{n} = a^{m-n}$	o - obvod, S	- plocha
$a^{-n} = 1/a^n$ $S = r^2$ $V = 4/3$ r^3 $\sqrt[n]{a^m} = a^{m/n}$	$(a^{m})^{n} = a^{m \cdot n}$	Kruh 0 = 2 r	Koule
	$a^{-1} = 1 / a^{-1}$	$S = r^2$	$V = 4/3 r^3$

ešení kvadratické rovnice $ax^{2} + bx + c = 0$ $X_{12} = (-b \pm \sqrt{b^2 - 4ac}) / 2a$

Geometrie a,b - strany, v - o - obvod, S - P - povrch, V	- výška, r - polom r plocha
Kruh $0 = 2 r$ $S = r^2$	Koule $P = 4 r^2$ $V = 4/3 r^3$
Válec P = 2 r(r+v) V = r ² v	Rota ní kužel P = $r^2 + r(r^2 + v^2)^{1/2}$ V = 1/3 r^2v

Р	edpony (SI)	
10 ²⁴	yotta	Y
10 ²¹	zeta	Z
10 ¹⁸	exa	Ε
10 ¹⁵	peta	P
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	M
10^{3}	kilo	k
10 ²	hekto	h
10 ¹	deka	da
10 ⁻¹	deci	d
10 ⁻²	centi	С
10 ⁻³	mili	m
10 ⁻⁶	mikro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	piko	p
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	a
10 ⁻²¹	zepto	Z
10 ⁻²⁴	yokto	У

Autor: RNDr. Lukáš Richtera, Ph.D. (oliver@centrum.cz). Vydání: t etí, upravené. Rok 2013. ISBN: 978-80-214-4346-4. Kopírování a ší ení tohoto dokumentu v nezm n né form je povoleno. Není povoleno využití tohoto materiálu pro komer ní a propaga ní ú ely. Nejd ležit jší použité zdroje:

Uvedené vztahy platí za podmínek, kdy jsou definovány.

- [1] Atomic Weights of the Elements 2009 (IUPAC Technical Report), Pure Appl. Chem., Vol. 83, No. 2, pp.359-396, 2011.
- [2] Standard Atomic Weights Revised (IUPAC Wire), Chemistry International, Vol. 29, No. 6, p. 18, 2007. [3] The Periodic Table of the Elements, Standard Form. http://www.periodictable.com/ (8.1.2009).
- [4] Periodic Table of Elements, ISBN 3-527-10109-8 Wiley VCH, P.O. Box 101161, D-69451 Weinheim, Germany, 1997.
- [5] The NIST Reference on Constants, Units, and Uncertainty. http://physics.nist.gov/cuu/ (11.8.2011).
- [6] conVERTER. http://www.converter.cz/(11.8.2011). [7] Greenwood N. N., Earnshaw A. Chemistry of the Elements, 2nd Ed., Butterworth-Heinemann, New York, 1997.